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Abstract

Decentralized financial networks of today remain isolated in silos that cannot trustlessly
communicate with each other and meaningfully exchange value. This leads custodial services
to offer potentially dangerous products that makes the overall ecosystem handing over control
of funds to third parties goes against the ethos that cryptocurrency was built on. Clover offers
a viable solution to this pain point utilising SPV proofs, Bitcoin script, and Ethereum contracts
by means of a unique solution called SPV simulation that enables trustless two-way pegs across
Bitcoin, Ethereum, Polkadot, and more.
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Chapter 1

Introduction

Since the early days of Nakamoto consensus, the ideal of trustless agreement across blockchains
has captured imaginations and inspired innovation. The intrigue of joint consensus, however,
does not diminish the marvel of universal concurrence over a single blockchain.

A 2-way peg (2WP) allows a transfer of an asset from base chain to a secondary blockchain
and vice-versa. The “transfer” is in fact an illusion: base layer assets are not transferred, but
temporarily locked on the base blockchain while the same amount of equivalent tokens are
unlocked in a secondary blockchain. The base layer assets can be unlocked when the equivalent
amount of tokens on the second blockchain are locked again (in the secondary blockchain). This
is essentially the 2WP promise.

The problem with this promise is that it can only be theoretically realized if the secondary
blockchain has settlement finality. Therefore, any 2WP system must be resistant to corruption
and rely on assumptions about the honesty of the actors involved in the 2WP. The most
important assumptions are that the primary blockchain is censorship resistant, and that the
majority of miners are assumed to be honest. Another required assumption may be that the
majority of third parties that will hold custody of locked assets is also assumed to be honest. If
these assumptions do not hold, then base layer assets and their equivalent secondary blockchain
tokens could be both unlocked at the same time, thus allowing a malicious double-spend. Any
2WP system must choose an implementation so that the parties being assumed to behave
honestly have economic and legal incentives to do so. This involves analysing the cost of
an attack by these critical parties and consequences of an attack. The security of a 2WP
implementation depends on the incentives to enforce the 2WP promise by the critical parties
taking part of the 2WP system.

To achieve a new-level of a trustless 2WP system, Clover created a model called built-in
SPV chain simulation technology to enable trustless two-ways pegs between Turing-complete
and non-Turing-complete blockchains. Contrary to popular belief, an EVM can verify Bitcoin
transactions directly, by enforcing some standards and dissecting Bitcoin transactions and block
headers. Clover is building advanced tools and opcodes for simplifying the overall process for
third-party developers. This is so that Clover can natively inspect a Bitcoin or Ethereum
transaction without storing/checking the entire external blockchain history, allowing trustless
two-way pegs for Bitcoin and Ethereum. Bitcoin and Ethereum transactions are both included
in a Merkle tree, whose block header contains the root of the Merkle tree for that block’s
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transactions. Given a header and a transaction, Clover can validate a Merkle path from the
root to the leaf that holds the transaction, which is called the Merkle based inclusion proof.
This means that Clover only needs the base layer block header, transaction, and its inclusion
proof to be stored in the Clover contract.

A user willing to peg-out some Bitcoin or Ether sends funds to a predetermined covenant/contract
address that escrows funds for further peg-ins, along with any respective proof data Clover needs
for verification. Clover verifies an outside transaction inside a smart contract. This part is a
quick run-through of transaction components, to ensure the caller is not trying to sneak through
fake content. Clover then can verify that the transaction is included in a block by checking
a Merkle proof of inclusion, then checking each block references the previous one, and then
calculate the difficulty level of that chain.

Clover validators, while securing the network, simultaneously notarise Clover block headers
with a secure n of m threshold signature scheme. Clover uses BIP-340 compatible Schnorr
signatures to provide a high level of decentralization for the threshold notarisation, as opposed
to today’s federated cross-chain bridges that are limited by either 15 signatories in Bitcoin
scripting or massive gas consumption on Ethereum. A user willing to peg-in Bitcoins or Ethers
sends tokenised assets to Clover-deployed peg-in contract whose proof of inclusion along with
the notary proof can redeem real assets back on their own chain.

In summary, this document describes the Clover threshold based signatures for the bridge
between Ethereum and Clover.

• Chapter 2 provides the requirements and assumptions of Clover.

• Chapter 3 presents the underlying cryptographic primitives including the threshold Schnorr
signatures.

• Chapter 7 provides a description of the bridge between Clover and Ethereum.

2
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Chapter 2

Requirements and Assumptions

2.1 Requirements
• The communication between the signers are done through gRPC services with mutual

SSL/TLS protocol. This protocol will only work with the certificates generated by the
same internal Certificate Authority (CA). Each certificate must contain domain name,
unique serial number, and other required attributes.

• For each signing server (i.e., signatory) Serveri, an online backup server must be main-
tained.

• Servers must be controlled by different governors from different locations.

2.1.1 (t, n)-Threshold Signatures

1. Clover uses (t, n)-threshold signature scheme for notarization purposes.

2.2 Assumptions
• The underlying cryptographic primitives (e.g., Schnorr signatures, SHA256, Blakeb) are

assumed to be secure.

• The users are supposed to use secure random number generators.

• The security of the system relies on the threshold number of honest signatories (i.e., at
least the threshold number of signatories are assumed to be secure at all times).

• CLV is the native token of the Clover network and plays a critical role in incentivizing
signatories for acting non-maliciously.

clover.finance
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Chapter 3

Cryptographic Primitives

3.1 Shamir Secret Sharing Scheme with a Dealer
In a (t, n) secret sharing scheme, a dealer distributes a secret s to n players P1, . . . ,Pn in such
a way that any group of at least t players can reconstruct the secret s, while any group of less
than t players do not get any information about s.

3.1.1 Secret sharing

• A dealer chooses s ∈R Zq (where n < q).

• The dealer chooses a random polynomial f(.) over Zq of degree at most t − 1 satisfying
f(0) = s.

• Each player Pi receives si = f(i) as his share.

• The dealer computes the public key of the players as P = s.G.

• The public and the private key shares: (pk, (sk1, . . . , skn)) = (P, (s1, . . . , sn)).

3.1.2 Secret Reconstruction

An arbitrary group P of t participants can reconstruct the polynomial f(.) by Lagrange’s
interpolation as follows:

f(u) =
∑
i∈P

f(i)ωi(u) where ωi(u) =
∏

j∈P,j 6=i

u− j
i− j

mod q.

Since it holds that s = f(0), the group P can reconstruct the secret as follows:

s = f(0) =
∑
i∈P

f(i)ωi where ωi = ωi(0) =
∏

j∈P,j 6=i

j

j − i
mod q.

4
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3.2 Verifiable Secret Sharing Schemes
We use elliptic curve notation for the discrete logarithm problem. Suppose q is a large prime
and G,H are generators of a subgroup of order q of an elliptic curve E. We assume that E is
chosen in such a way that the discrete logarithm problem in the subgroup generated by G is
hard, so it is infeasible to compute the integer d such that G = dH.

3.2.1 Verifiable Secret Sharing Scheme to Prevent the Dealer From
Cheating

A Verifiable Secret Sharing scheme (VSS) prevents the dealer from cheating. In a VSS scheme,
each player can verify his share. If the dealer distributes inconsistent shares, he will be detected.

Assume the dealer has a secret s′ ∈ Zq and a random number s′ ∈ Zq, and is committed to
the pair (s, s′) through public information C0 = sG + s′H. The secret s can be shared among
P1, · · · , Pn as follows.

The dealer performs the following steps

1. Choose random polynomials f(u) = s+ f1u+ . . .+ ft−1u
t−1 and f ′(u) = s+ f ′1u+ . . .+

f ′t−1u
t−1 where s, s′, fk, f ′k ∈ Zq for k ∈ {1, . . . , t− 1}.

2. Compute (si, s
′
i) = (f(i), f ′(i)) for i ∈ {1, . . . , n}.

3. Send (s, s′i) secretly to player Pi for i ∈ {1, . . . , n}.

4. Broadcast the values Ck = fkG+ f ′kH for k ∈ {1, · · · , t− 1}.

Each player Pi performs the following steps

1. Verify

siG+ s′iH =
t−1∑
k=0

ikCk. (1)

If this is false, broadcast a complaint against the dealer.

2. For each complaint from a player i, the dealer defends himself by broadcasting the values
f(i), f ′(i) that satisfy the above equality in step 1.

Reject the dealer if

• he received at least t complaints in step 1, or

• he answered to a complaint in step 2 with values that violate step 1.

Pedersen proved that any coalition of less than t players cannot get any information about
the shared secret, provided that the discrete logarithm problem in E is hard.

clover.finance
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3.2.2 Generating a Random Secret without Trusted Dealer

We can also generate a random shared secret in a distributed way which can be achieved by
the following protocol [GJKR07].

The KeyGen protocol will be represented as

(s1, · · · , sn)
(t,n)←−− KeyGen((r|Y, akG,H0), k ∈ {1, . . . , t− 1}).

The notation here means that:

• H0: the set of players that have not been detected to be cheating.

• sj is Pj’s share of the secret r for each j ∈ H0.

• The values akG are the public commitments of the sharing polynomial f() (they can be
computed using public information).

• (r, Y ): r is a private key and Y is the corresponding public key.

KeyGen():

1. Each player Pi chooses ri, r′i ∈ Z` at random and verifiably secret shares (ri, r
′
i), act-

ing as the dealer according to Pedersen’s VSS scheme. Let the sharing polynomials be
fi(u) =

∑t−1
k=0 aiku

k and f ′i(u) =
∑t−1

k=0 a
′
iku

k where ai0 = ri, a
′
i0 = r′i, and let the public

commitments be Cik = aik = aikG+ a′ikH for k ∈ {0, . . . , t− 1}.

2. The distributed secret value r is not explicitly computed by any player, but it equals
r =

∑
i∈H0

ri. Each player Pi sets his share of the secret as si =
∑

j∈H0
fj(i) mod q, and

the value s′i =
∑

i∈H0
f ′j(i) mod q.

3. Extracting Y =
∑

j∈H0
rjG: Each player in H0 exposes Yi = siG via Feldman’s scheme:

• Each player Pi for i ∈ H0 broadcasts Aik = aikG for k ∈ {0, . . . , t− 1}.
• Each player Pj verifies the values broadcast by the other players in H0. In particular,

every player Pi for i ∈ H0,Pj checks if

fi(j)G =
t−1∑
k=0

jkAik. (2)

If the check fails for an index i, Pj complains against Pi by broadcasting the values
fi(j), f

′i(j) that satisfy (1) but do not satisfy (2).

• For players Pi who received at least one valid complaint, i.e., values which satisfy (1)
but do not satisfy (2), the other players run the reconstruction phase of Pedersen’s
VSS scheme to compute ri, fi(.), Aik for k = 0, . . . , t− 1 in the clear. All players in
H0 set Yi = riG.

6
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After executing this protocol, the following equations hold:

Y = rG
f(u) = r + a1u+ . . .+ at−1u

t−1 where ak =
∑

j∈Ha ajk for k ∈ {1, . . . , t− 1}
f(j) = sj for j ∈ H0.

This scheme has been proven to be robust under the assumption that t ≤ n/2, i.e., if less
than t players are corrupted, the values computed by the honest players satisfy the above
equations.

clover.finance
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3.3 Elliptic Curve Digital Signature Algorithm (ECDSA)
ECDSA is a standard cryptographic algorithm [Nat13] used by almost all cryptocurrencies to
guarantee that funds can only be spent by their rightful owners.

Keys

• secret key: s = x ∈ Z∗n

• public key: P = x.G

Signing

sign(secret key s, message hash: h)

1. k←$Z∗n

2. (x1, y1) = k.G

3. q = x1 mod n. If q = 0, go back to step 1.

4. r = k−1(h+ qs) mod n. If r = 0, go back to step 1.

5. return (q, r)

Verification

SignVer(signature (q, r), public key P,
message hash h)

1. w = r−1 mod n

2. u1 = hw mod n

3. u2 = qw mod n

4. (x1, y1) = u1.G+ u2.P . If (x1, y1) is equal to identity, then the signature is invalid.

5. The signature is valid if q ≡ x1 mod n, invalid otherwise.

8
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Chapter 4

A (t, n) Threshold Schnorr Signatures

4.1 Schnorr Signatures
Let (x, Y ) be a user’s key pair, let m be a message, let h() be a one-way hash function, and
let G be a generator of an elliptic curve group having prime order q. Then a user generates a
Schnorr signature on the message m as follows.

1. Select e ∈ Zq at random

2. Compute V = eG

3. Compute σ = e+ h(m||V )x mod q

4. Define the signature on m to be (V, σ)

A verifier accepts a signature (V, σ) on a message m if and only if σ ∈ Zq and

σG = V + h(m||V )Y.

4.2 BIP340

4.2.1 Public Key Generation

Input: The secret key sk: a 32-byte array, freshly generated uniformly at random.
The algorithm PubKey(sk) is defined as:

• Let d′ = int(sk).

• Fail if d′ = 0 or d′ ≥ n.

• Return bytes(d′ ·G).

Remark. Note that we use a very different public key format (32 bytes) than the ones used by
existing systems (which typically use elliptic curve points as public keys, or 33-byte or 65-byte
encodings of them). A side effect is that PubKey(sk) = PubKey(bytes(n− int(sk)), so every
public key has two corresponding secret keys.

clover.finance
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4.2.2 Signing

Input:

• The secret key sk: a 32-byte array

• The message m: a 32-byte array

• Auxiliary random data a: a 32-byte array

The algorithm Sign(sk,m) is defined as:

1. Let d′ = int(sk)

2. Fail if d′ = 0 or d′ ≥ n

3. Let P = d′ ·G

4. Let d = d′ if haseveny(P ), otherwise let d = n− d′.

5. Let t be the byte-wise XOR of bytes(d) and hashBIP0340/aux(a).

6. Let rand = hashBIP0340/nonce(t||bytes(P )||m).

7. Let k′ = int(rand) mod n.

8. Fail if k′ = 0.

9. Let R = k′ ·G.

10. Let k = k′ if has_even_y(R), otherwise let k = n− k′.

11. Let e = int(hashBIP0340/challenge(bytes(R)||bytes(P )||m)) mod n.

12. Let sig = bytes(R)||bytes((k + ed) mod n).

13. If V erify(bytes(P ),m, sig) returns failure, abort.

14. Return the signature sig.

4.2.3 Verification

Input:

• The public key pk: a 32-byte array

• The message m: a 32-byte array

• A signature sig: a 64-byte array

The algorithm V erify(pk,m, sig) is defined as:

10
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1. Let P = liftx(int(pk)); fail if that fails.

2. Let r = int(sig[0 : 32]); fail if r ≥ p.

3. Let s = int(sig[32 : 64]); fail if s ≥ n.

4. Let e = int(hashBIP0340/challenge(bytes(r)||bytes(P )||m)) mod n.

5. Let R = s ·G− eP .

6. Fail if is_infinite(R).

7. Fail if not has_even_y(R).

8. Fail if x(R) 6= r.

9. Return success if and only if no failure occurred before reaching this point.

For every valid secret key sk and message m, V erify(PubKey(sk),m, Sign(sk,m)) will
succeed.

Remark. Note that the correctness of verification relies on the fact that liftx always returns
a point with an even Y coordinate.

4.3 A (t, n) Threshold Schnorr Signatures

We are now ready to describe (t, n) threshold digital signature scheme for Schnorr signatures
[SS01].

Our protocol consists of a key generation protocol, a signature issuing protocol, and a
verification protocol. Let P1, · · · , Pn be the set of players issuing a signature and let G be a
generator of an elliptic curve group of order q.

4.3.1 Key Generation Protocol

All n players have to co-operate to generate a public key, and a secret key share for each Pj.
Let the output of the protocol be

(α1, · · · , αn) = (x|Y, bkG,H0), k ∈ {1, · · · , t− 1}.

For each j ∈ H0, αj is the secret key share of Pj and will be used to issue a partial signature
for the key pair (x, Y ).

clover.finance
11



UNCLASSIFIED
Clover Finance - A Foundational Layer for Cross-chain Compatibility

4.3.2 Signature Issuing Protocol

Let m be a message and let h() be a one-way hash function. Suppose that the players with
index set H1 ⊂ H0 wants to issue a signature. They use the following protocol:

1. If |H1| < t, stop. Otherwise, the subset H1 generates a random shared secret. Let the
output be

(β1, · · · , βn) = (e|V, ckG,H2), k ∈ {1, · · · , t− 1}.

2. If |H2| < t, stop. Otherwise, each Pi for i ∈ H2 reveals

γi = βi + h(m||V )αi.

3. Each Pi for i ∈ H2 verifies that γjG = V +
∑t−1

k=1 ckj
kG + h(m||V )(Y +

∑t−1
k=1 bkj

kG) for
all j ∈ H2.

4. Let H3 be the index set of players not detected to be cheating at step 3.

5. If |H3| < t, then stop. Otherwise, each Pi for i ∈ H3 selects an arbitrary subset H4 ⊂ H3

with |H4| = t and computes σ satisfying σ = e+ h(m||V )x,

where

σ =
∑
j∈H4

γjωj and ω =
∏

i=6=j,`H4

`

`− j
.

The signature is (σ, V ).

4.3.3 Signature Verification Protocol

The signature can be verified as in Schnorr’s original scheme:

σG = V + h(m||V )Y and σ ∈ Zq.

12
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Chapter 5

Gennaro et al.’s Threshold ECDSA with
Trustless Setup

5.1 A Share Conversion Protocol

Assume that we have two parties Alice and Bob holding two secrets a, b ∈ Zq respectively which
we can think of as multiplicative shares of a secret x = ab mod q. Alice and Bob would like
to compute secret additive shares α, β of x, that is random values such that α + β = x = ab
mod q with Alice holding a and Bob holding b.

We assume that Alice is associated with a public key EA for an additively homomorphic
scheme E over an integer N . Let K > q also be a bound which will be specified later. In
the following, we will refer to this protocol as an MtA (for Multiplicative to Additive) share
conversion protocol. In our protocol we also assume that B = gb might be public. In this case
an extra check for Bob is used to force him to use the correct value b. We refer to this enhanced
protocol as MtAwc (as MtA “with check”).

1. Alice initiates the protocol by

• sending cA = EA(a) to Bob

• proving in ZK that a < K via a range proof

2. Bob computes the ciphertext cB = b×E cA +E EA(β′) = EA(ab+β′) where β′ ∈ ZN . Bob
sets his share to β = −β′ mod q. He responds to Alice by

• sending cB
• proving in ZK that b < K

• only if B = gb is public proving in ZK that he knows b, β′ such that B = gb and cBb
×E cA +E EA(β′)

3. Alice decrypts cB to obtain α′ and sets α = α′ mod q.

clover.finance
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5.2 Key Generation Protocol
• Phase 1. Each Player Pi selects ui ∈R Zq; computes [KGCi, KGDi] = Com(gui) and

broadcast KGCi. Each Player Pi broadcasts Ei the public key for Paillier’s cryptosystem.

• Phase 2. Each Player Pi broadcasts KGDi. Let yi be the value decommitted by Pi. The
player Pi performs a (t, n) Feldman-VSS of the value ui. The public key is set to y =

∏
i yi.

Each player adds the private shares received during the n Feldman VSS protocols. The
resulting values xi are a (t, n) Shamir’s secret sharing of the secret key x =

∑
i ui. Note

that the values Xi = gxi are public.

• Phase 3. Let Ni = piqi be the RSA modulus associated with Ei. Each player Pi proves
in ZK that he knows xi using Schnorr’s protocol [Sch21] and that he knows pi, qi using
any proof of knowledge of integer factorization.

5.3 Signature Generation
Let S ⊂ [1 · · ·n] be the set of players participating in the signature protocol. We assume that
|S| = t. For the signing protocol we can share any ephemeral secrets using a (t, t) secret sharing
scheme, and do not need to use the general (t, n) structure. We note that using the appropriate
Lagrangian coefficients λi, S each player in S can locally map its own (t, n) share xi of x into
a (t, t) share of x,wi = (λi,S)(xi), i.e. x =

∑
i∈S wi. Since Xi = gxi and λi,S are public values,

all the players can compute Wi = gwi = Xλi,S
i .

1. Phase 1. Each Player Pi selects ki, γi ∈R Zq; computes [Ci, Di] = Com(gγi) and broad-
cast Ci. Define k =

∑
i∈S ki, γ =

∑
i∈S γi. Note that

kγ =
∑
i,j∈S

kiγj mod q

kx =
∑
i,j∈S

kiwj mod q

2. Every pair of players Pi, Pj engages in two multiplicative-to-additive share conversion
subprotocols

• Pi, Pj run MtA with shares ki, γj respectively. Let αij [resp. βij] be the share received
by player Pi [resp. Pj] at the end of this protocol, i.e.

kiγj = αij + βij.

Player Pi sets γi = kiγi +
∑

j 6=i αij + βj 6=iψji. Note that the σi are a (t, t) additive
sharing of kx =

∑
i∈S σi.

3. Phase 3. Every player Pi broadcasts δi and the players reconstruct δ =
∑

i∈S δ = kδ.
The players compute δ−1 mod q.

14
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4. Each Player Pi broadcasts Di. Let Γi be the values decommitted by Pi who proves in ZK
that he knows γi such that Γi = gγi using Schnorr’s protocol.

The players compute

R = [
∏
i∈S

Γi]
δ−1 = g(

∑
i∈Sγi

)k−1γ−1

= gγk
−1γ−1

= gk−1

and r = H’(R).

5. Phase 5. Each player Pi sets si = mki + rσi. Note that

∑
i∈S

si = m
∑
i∈S

ki + r
∑
i∈S

σi = mk + rkx = k(m+ xr) = s

i.e. the si are a (t, t) sharing of s.

• (5A) Player Pi chooses `i, ρi ∈ Zq computes Vi = Rsig`i , Ai = gρi , [Ĉi, D̂i] =
Com(Vi, Ai) and broadcasts Ĉi. Let ` =

∑
i `i and ρ =

∑
i ρi.

• (5B) Player Pi broadcasts D̂i and proves in ZK that he knows si, `i, ρi such that
Vi = Rsig`i and Aρii . If a ZK proof fails, the protocol aborts. Let V = g−my−r

∑
i∈S Vi

(this should be V = g`) and A =
∏

i∈S Ai.

• (5C) Player Pi computes Ui = V ρi and Ti = A`i . It commits [Ĉi, D̂i] = Com(Ui, Ti)
and broadcasts D̂i.

• (5D) Player Pi broadcasts D̂i to decommit to Ui, Ti if
∏

i∈S[Ti] 6=
∏

i∈S si the pro-
tocol aborts.

• (5E) Otherwise player Pi broadcasts si. The players compute s =
∑

i∈S si. If (r, s) is
not a valid signature the players abort, otherwise they accept and end the protocol.
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Chapter 6

Secure Communication Between Signers
Through Schnorr-Signed ElGamal
Encryption

In this section, we propose an end-2-end secure communication protocol between signers. This
protocol is necessary for signers to be able to apply threshold key generation privately.

6.1 Schnorr-Signed ElGamal Encryption

The following algorithm is called Schnorr-Signed ElGamal Encryption [SJ00] where Alice is the
sender and Bob is the receiver.

6.1.1 System Setup:

• Generate a group G of prime order q.

• Choose an arbitrary integer P ∈ G.

• Alice has long-term public and private key pair (aG, a).

• Bob has long-term public and private key pair (bG, b).

• Let CertA = SignCA(· · · , A, aG, · · · ) be a certificate of Alice and CertB = SignCA(· · · , B, bG, · · · )
be a certificate of Bob where CA is the Certificate Authority. We assume that Alice holds
Bob’s certificate and Bob holds Alice’s certificate.

• Choose a hash function H1 : G→ {0, 1}k (where |k|=256).

• Choose a hash function H2 : G3 → Zq.

The system parameters are params =< G, q, P >.
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6.1.2 Encryption and Signing:

Alice encrypts and signs a message M as follows:

• Chooses random r, s ∈ Zq.

• Computes R = rG, R′ = rB, S = sG.

• Computes K = H1(R
′).

• Computes C = EncK(M) where Enc is AES256.

• Computes e = H2(S,A,C).

• Computes z = s+ ea.

• Outputs (R,C, e, z) ∈ G × M × Z2
q.

6.1.3 Decryption and Verification:

Receiving (R,C, e, z), Bob decrypts the ciphertext C and verifies the signature (e, z) as follows:

• Accept the signature if and and only if e ?
= H2(zG − eA,A,C). Otherwise, abort the

protocol.

• Computes R′ = bR

• Computes K = H1(R
′).

• Decrypts C as M = DecK(C).
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Chapter 7

Clover Bridge Flow

The Clover bridge is a threshold signature based protocol for notarizing the Clover and Ethereum
block headers.

7.1 Setup

Figure 7.1: Setup

18
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• During the key generation setup, the protocol in Section 4.3 will be executed (see Section
7.1) between the participants Pi for i = 1, · · · , n.

• During the initialization phase, the participants Pi for i = 1, · · · , n will be chosen by the
Clover foundation. At the end of the setup, followings will be generated:

– Each Pi receive a partial private key ski.

– The overall public key is pk which has a lifetime of 2592000 seconds (= 30 days).

– The overall private key sk is unknown to everyone due to trustless generation.

• A bridge contract will be deployed on the Clover network.

• pk will be added to the Clover bridge contract.
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7.2 Block Header Notarization

Figure 7.2: Block Header Notarization

1. Each Pi run full nodes to listen both the Ethereum mainnet and the Clover mainnet.

2. Whenever a new block blockj is observed Pis run a signing ceremony. At the end of the
ceremony, a valid signature for the block header hash is generated. XXXTBD: we do
not need to sign each block because we dont care the blocks which does not
include any tx related to our smart contractXXX

3. The jointly generated signature Signaturej = Signsk(Hash(blockj)) along with the
block header itself is submitted to the Clover bridge contract. In particular, nota-
rize_ethereum_block_header method is called when submitting an Ethereum block header
and notarize_clover_block_header method is called when submitting a Clover block
header.

4. The Clover deployed bridge contract validates Signaturej using the overall public key
pk. If the signature is valid, the block header and its notary signature is stored inside the
bridge contract. Note that users can read this notary signature from the bridge contract.

20
clover.finance



UNCLASSIFIED
Clover Finance - A Foundational Layer for Cross-chain Compatibility

7.3 Providing Dynamic Signatories: Updating Signing Keys
of Pis

Figure 7.3: Key Update

1. Pis constantly check the expiry date of pk. If one day (24 hours) is left to the expiry date
of pk, a new key generation ceremony will be executed to generate a new key pk′.

2. pk′ will be signed using Pis’s old partial private keys as Signature = Signsk(pk
′).

3. Signature along with pk′ will be submitted to the Clover bridge contract. In particular,
update_overall_key method is called for this event.

4. The Clover bridge contract verifies the signature Signature using the public key pk. If it
is valid, the current public key pk and is replaced with pk′ by the contract.

5. Once Pis observe in the contract that pk is successfully replaced with pk′, they will start
using their new partial private keys for future notarizations. Note that the old partial
private keys can be discarded after certain period of time as it is no longer valid.
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7.4 Procedures to be a Signatory

Figure 7.4: Brigde contract

1. During the lifetime of a public key pk, anyone with X amount of CLV can request to
participate in the protocol. X amount of CLV is locked until the the key update ceremony
day.

2. One day left to the expiry date of the public key pk, existing signatories vote on whether
to permit new participant who requested to join.

3. If the new signatory Pk is permitted to join, a new key generation ceremony will be
executed with the new signatory Pk that now commits to pk′. Pk’s funds kept locked
until next the key update.

4. If the new signatory Pk is not permitted to join, locked X CLV can then be redeemed
from the Bridge contract.
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7.5 Procedures to leave from Signatory
1. During the lifetime of a public key pk, an existing signatory can request to leave the

protocol.

2. One day left to the expiry date of the public key pk, a new key generation ceremony will
be executed without the existing signatory.

3. The signatory who left the protocol can redeem their CLV plus some yield from the Bridge
contract.
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7.6 How users peg in?

Figure 7.5: Block header

1. A user willing to redeem their ethers must send cETHs to Clover-deployed peg out con-
tract.

2. User waits several confirmation for this transaction.

3. In order to convince Ethereum-deployed peg-in contract, user must submit SPV proof for
this transaction (i.e., TX5) which sent cETHs to Clover-deployed peg out contract.

4. This transaction commits to receipts root of whichever block it is part of. User submits
the block header, respective Merkle path, transaction raw bytedata, and notarization
signature for the block header it is part of.

5. Ethereum-deployed peg-in contract already knows the overall key which is being updated
in every key update event (2592000 seconds), therefore peg in contract checks notarization
signature against this public key and redeem escrowed ethers back to user if all checks
are correct.

6. Users cover their own gas fee when performing this redemption.
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